秦学站点
秦学官网
小学思维数学简单解题方法——尝试法!
小新 2018-02-24 14:58:44

  尝试法是小学生学习思维数学的时候比较常用的一种方法,学生学习的时候也要重视这种方法,多多了解,多多练习,这样就能更好的增强,更好的学习,在学生充分的掌握了这种方法的学习之后就能够使用与做题中,这样做题也是比较的,那么关于小学思维数学简单解题方法之“尝试法”,学生们来详细的了解一下吧!

小学思维数学简单解题方法——尝试法!
小学思维数学简单解题方法——尝试法!

   尝试法

  解应用题时,按照自己认为可能的想法,通过尝试,探索规律,从而获得解题方法,叫做尝试法。尝试法也叫“尝试探索法”。

  一般来说,在尝试时可以提出假设、猜想,无论是假设或猜想,都要目的明确,尽可能恰当、合理,都要知道在假设、猜想和尝试过程中得到的结果是什么,从而减少尝试的次数,增强解题的效率。
#p#副标题#e#

  例1 把数字3、4、6、7填在图2-1的空格里,使图中横行、坚列三个数相加都等于14。(适于一年级程度)

小学思维数学简单解题方法——尝试法!

  解:七八岁的儿童,观察、总结、发现规律的能力薄弱,做这种填空练习,一般都感到困难。可先启发他们认识解此题的关键在于试填中间的一格。中间一格的数确定后,下面一格的数便可由竖列三个数之和等于14来确定,剩下的两个数自然应填入左右两格了。

  中间一格应填什么数呢?

  先看一个日常生活中的例子。如果我们要从一种月刊全年的合订本中找到第六期的第23页,我们要从合订本大约一半的地方打开。要是翻到第五期,就要再往后翻;要是翻到第七期、第八期,就要往前翻。找到第六期后,再往接近第23页的地方翻,……

  这样反复试探几次,步步逼近,较后就能找到这一页。

  这就是在用“尝试法”解决问题。

  本题的试数范围是3、4、6、7四个数,可由小至大,或由大至小依次填在中间的格中,按“横行、竖列三个数相加都得14”的要求来逐个尝试。

 
 
小学思维数学简单解题方法——尝试法!

  如果中间的格中填3,则竖列下面的一格应填多少呢?因为14-5-3=6,所以竖列下面的一格中应填6(图2-2)。

  下面就要把剩下的4、7,分别填入横行左右的两个格中(图2-3)。把横行格中的4、3、7三个数加起来,得14,合乎题目要求。

  如果中间一格填4、或填6、7都不合乎题目的要求。

  所以本题的答案是图2-3或图2-4。

  例2 把1、2、3……11各数填在图2-5的方格里,使每一横行、每一竖行的数相加都等于18。(教科书第四册第57页的思考题,适于二年级程度)

小学思维数学简单解题方法——尝试法!

  解:图2-5中有11个格,正好每一格填写一个数。

  图2-6中写有A、B、C的三个格中的三个数,既要参加横向的运算,又要参加纵向的运算,就是说这三个数都要被用两次。因此,确定A、B、C这三个数是解此题的关键。

 
小学思维数学简单解题方法——尝试法!

  因为1~11之中中间的三个数是5、6、7,所以,我们以A、B、C分别为5、

  6、7开始尝试(图2-7)。

  以6为中心尝试,看6上、下两个格中应填什么数。

  因为18-6=12,所以6上、下两格中数字的和应是12。

  考虑6已是1~11之中中间的数,那么6上、下两格中的数应是1~11之中两头的数。再考虑6上面的数还要与5相加,6下面的数还要与7相加,5比7小,题中要求是三个数相加都等于18,所以在6上面的格中填11,在6下面的格中填1(图2-8)。

小学思维数学简单解题方法——尝试法!

  6+11+1=18

  看图2-8。6上面的数是11,11左邻的数是5,18-11-5=2,所以5左邻的数是2(图2-9)。

  再看图2-8。6下面的数是1,1右邻的数是7,18-1-7=10,所以7右邻的数是10(图2-9)。

  现在1~11之中只剩下3、4、8、9这四个数,图2-9中也只剩下四个空格。在5的上、下,在7的上、下都应填什么数呢?

 
小学思维数学简单解题方法——尝试法!

  因为18-5=13,所以5上、下两格中数字的和应是13,3、4、8、9这四个数中,只有4+9=13,所以在5的上、下两格中应填9与4(图2-10)。

  看图2-10。因为6左邻的数是4,18-4-6=8,所以6右邻的数是8。

  因为18-7-8=3,并且1-11的数中,只剩下3没有填上,所以在7下面的格中应填上3。

  图2-10是填完数字的图形。
#p#副标题#e#

  *例3 在9只规格相同的手镯中混有1只较重的假手镯。在一架没有砝码的天平上,较多只能称两次,你能把假手镯找出来吗?(适于三年级程度)

  解:先把9只手镯分成A、B、C三组,每组3只。

  ①把A、B两组放在天平左右两边的秤盘上,如果平衡,则假的1只在C组里;若不平衡,则哪组较重,假的就在哪组里。

  ②再把有假手镯的那组中的两只分别放在天平的左右秤盘上。如果平衡,余下的1只是假的;若不平衡,较重的那只是假的。

  *例4 在下面的15个8之间的位置上,添上+、-、×、÷符号,使得下面的算式成立。(适于三年级程度)8 8 8 8 8 8 8 8 8 8 8 8 8 8 8=1986

  解:先找一个接近1986的数,如:8888÷8+888=1999。

  1999比1986大13。往下要用剩下的7个8经过怎样的运算得出一个等于13的算式呢?88÷8=11,11与13接近,只差2。

  往下就要看用剩下的4个8经过怎样的运算等于2。8÷8+8÷8=2。

  把上面的思路组合在一起,得到下面的算式:

  8888÷8+888-88÷8-8÷8-8÷8=1986

  例5 三个连续自然数的积是120,求这三个数。(适于四年级程度)

  解:假设这三个数是2、3、4,则:

  2×3×4=24

  24<120,这三个数不是2、3、4;

  假设这三个数是3、4、5,则:

  3×4×5=60

  60<120,这三个数不是3、4、5;

  假设这三个数是4、5、6,则:

  4×5×6=120

  4、5、6的积正好是120,这三个数是4、5、6。例6 在下面式子里的适当位置上加上括号,使它们的得数分别是47、75、23、35。(适于四年级程度)

  (1)7×9+12÷3-2=47

  (2)7×9+12÷3-2=75

  (3)7×9+12÷3-2=23

  (4)7×9+12÷3-2=35

  解:本题按原式的计算顺序是先做第二级运算,再做第一级运算,即先做乘除法而后做加减法,结果是:

  7×9+12÷3-2

  =63+4-2

  =65

  “加上括号”的目的在于改变原来的计算顺序。由于此题加中括号还是加小括号均未限制,因此解本题的关键在于加写括号的位置。可以从加写一个小括号想起,然后再考虑加写中括号。如:

  (1)7×7=49,再减2就是47。这里的第一个数7是原算式中的7,要减去的2是原算式等号前的数,所以下面应考虑能否把9+12÷3通过加括号后改成得7的算式。经过加括号,(9+12)÷3=7,因此:

  7×[(9+12)÷3]-2=47

  因为一个数乘以两个数的商,可以用这个数乘以被除数再除以除数,所以本题也可以写成:

  7×(9+12)÷3-2=47

  (2)7×11=77,再减2就得75。这里的7是原算式中的第一个数,要减去的2是等号前面的数。下面要看9+12÷3能不能改写成得11的算式。经尝试9+12÷3不能改写成得11的算式,所以不能沿用上一道题的解法。7×9+12得75,这里的7、9、12就是原式中的前三个数,所以只要把3-2用小括号括起来,使7×9+12之和除以1,问题就可解决。由此得到:

  (7×9+12)÷(3-2)=75

  因为(3-2)的差是1,所以根据“两个数的和除以一个数,可以先把两个加数分别除以这个数,然后把两个商相加”这一运算规则,上面的算式又可以写成:

  7×9+12÷(3-2)=75

  在上面的这个算式中,本应在7×9的后面写上“÷(3-2)”,因为数除以1等于这个数本身,为了适应题目的要求,不在7×9的后写出“÷(3-2)”。

  (3)25-2=23,这个算式中,只有2是原算式等号前的数,只要把7×9+12÷3改写成得25的算式,问题就可解决。又因为7×9+12=75,75÷3=25,所以只要把7×9+12用小括号括起来,就得到题中所求了。

  (7×9+12)÷3-2=23

  (4)7×5=35, 7是原算式中的第一个数,原算式中的 9+12÷3-2能否改写成得5的算式呢?因为 7-2=5,要是9+12÷3能改写成得7的算式就好了。经改写为(9+12)÷3=7,因此问题得到解决。题中要求的算式是:

  7×[(9+12)÷3-2]=35

  *例7 王明和李平一起剪羊毛,王明剪的天数比李平少。王明每天剪20只羊的羊毛,李平每天剪12只羊的羊毛。他俩共剪了112只羊的羊毛,两人平均每天剪14只羊的羊毛。李平剪了几天羊毛?(适于四年级程度)

  解:王明、李平合在一起,按平均每天剪14只羊的羊毛计算,一共剪的天数是:

  112÷14=8(天)

  因为王明每天剪20只,李平每天剪12只,一共剪了112只,两人合起来共剪了8天,并且李平剪的天数多,所以假定李平剪了5天。则:

  12×5+20×(8-5)=120(只)

  120>112,李平不是剪了5天,而是剪的天数多于5天。

  假定李平剪了6天,则:

  12×6+20×(8-6)=112(只)

  所以按李平剪6天计算,正满足题中条件。

  答:李平剪了6天。

  *例8 一名学生读一本书,用整天读80页的速度,需要5天读完,用整天读90页的速度,需要4天读完。现在要使每天读的页数跟能读完这本书的天数相等,每天应该读多少页?(适于五年级程度)

  解:解这道题的关键是要求出一本书的总页数。因为每天读的页数乘以读的天数等于一本书的总页数,又因为每天读的页数与读完此书的天数相等,所以知道了总页数就可以解题了。

  根据“用整天读80页的速度,需要5天读完”,是否能够认为总页数就是 80×5=400(页)呢?不能。

  因为5天不每天都读80页,所以只能理解为:每天读80页,读了4天还有余下的,留到第五天才读完。这也就是说,这本书过了80×4=320(页),较多不会过:

  90×4=360(页)

  根据以上分析,可知这本书的页数在321~360页之间。知道总页数在这个范围之内,往下就不难想到什么数自身相乘,积在321~360之间。

  因为17×17=289,18×18=324,19×19=361,324在321~360之间,所以只有每天读18页才符合题意,18天看完,全书324页。

  答:每天应该读18页。

  *例9 一个数是5个2,3个3,2个5,1个7的连乘积。这个数有许多约数是两位数。这些两位数的约数中,较大的是几?(适于六年级程度)

  解:两位数按从大到小的顺序排列为:

  99、98、97、96……11、10

  以上两位数分解后,它的质因数只能是2、3、5、7,并且在它的质因数分解中2的个数不过5,3的个数不过3,5的个数不过2,7的个数不过1。

  经尝试,99不符合要求,因为它有质因数11;98的分解式中有两个7,也不符合要求;质数97当然更不会符合要求。而,

  96=2×2×2×2×2×3

  所以在这些两位数的约数中,较大的是96。

  答略。

  *例10 从一个油罐里要称出6千克油来,但现在只有两个桶,一个能容4千克,另一个能容9千克。求怎样才能称出这6千克油?(适于六年级程度)

  解:这道题单靠计算不行,我们尝试一些做法,看能不能把问题解决。

  已知大桶可装9千克油,要称出6千克油,先把能容9千克油的桶倒满,再设法倒出9千克油中的3千克,为达到这一目的,我们应使小桶中正好有1千克油。

  怎样才能使小桶里装1千克油呢?

  (1)把能容9千克油的大桶倒满油。

  (2)把大桶里的油往小桶里倒,倒满小桶,则大桶里剩5千克油,小桶里有4千克油。

  (3)把小桶中的4千克油倒回油罐。

  (4)把大桶中剩下的油再往小桶里倒,倒满小桶,则大桶里剩下1千克油。

  (5)把小桶中现存的4千克油倒回油罐。此时油罐外,只有大桶里有1千克油。

  (6)把大桶中的1千克油倒入小桶。

  (7)往大桶倒满油。

  (8)从大桶里往有1千克油的小桶里倒油,倒满。

  (9)大桶里剩下6千克油。

0试听各科目课程
xhwy668668
加入家长交流圈,添加微信号xhwy668668 加入家长交流圈,添加微信号xhwy668668
热门活动
秦学教育
亲爱的家长(学生)您好:
恭喜您,您已经预约成功!
同时你将获得一次学习测评机会
+年级学科资料