秦学站点
秦学官网
干货必读:高中数学15个解题捷径,助你轻松拿高分!
郁夫 2024-03-13 14:52:46

  高中数学作为重要科目,掌握解题技巧至关重要。以下提供了15个解题捷径,帮助你轻松应对高考数学考试,拿到高分也很轻松!

  1 . 适用条件

  [直线过焦点],必有ecosA=(x-1)/(x+1),其中A为直线与焦点所在轴夹角,是锐角。x为分离比,必须大于1.

  注:上述公式适合一切圆锥曲线。如果焦点内分(指的是焦点在所截线段上),用该公式;如果外分(焦点在所截线段延长线上),右边为(x+1)/(x-1),其他不变。

  2 . 函数的周期性问题(记忆三个)

  (1)若f(x)=-f(x+k),则T=2k;

  (2)若f(x)=m/(x+k)(m不为0),则T=2k;

  (3)若f(x)=f(x+k)+f(x-k),则T=6k。

  注意点:a.周期函数,周期必无限b.周期函数未必存在最小周期,如:常数函数。c.周期函数加周期函数未必是周期函数,如:y=sinxy=sin派x相加不是周期函数。

  3 . 关于对称问题(无数人搞不懂的问题)总结如下

  (1)若在R上(下同)满足:f(a+x)=f(b-x)恒成立,对称轴为x=(a+b)/2

  (2)函数y=f(a+x)与y=f(b-x)的图像关于x=(b-a)/2对称;

  (3)若f(a+x)+f(a-x)=2b,则f(x)图像关于(a,b)中心对称

  4 . 函数奇偶性

  (1)对于属于R上的奇函数有f(0)=0;

  (2)对于含参函数,奇函数没有偶次方项,偶函数没有奇次方项

  (3)奇偶性作用不大,一般用于选择填空

  5 . 数列爆强定律

  (1)等差数列中:S奇=na中,例如S13=13a7(13和7为下角标);

  (2)等差数列中:S(n)、S(2n)-S(n)、S(3n)-S(2n)成等差

  (3)等比数列中,上述2中各项在公比不为负一时成等比,在q=-1时,未必成立

  (4)等比数列爆强公式:

  S(n+m)=S(m)+q²mS(n)可以迅速求q

  6 . 数列的终极利器,特征根方程

  首先介绍公式:对于an+1=pan+q(n+1为下角标,n为下角标),

  a1已知,那么特征根x=q/(1-p),则数列通项公式为an=(a1-x)p²(n-1)+x,这是一阶特征根方程的运用。

  二阶有点麻烦,且不常用。所以不赘述。希望同学们牢记上述公式。当然这种类型的数列可以构造(两边同时加数)

  7 . 函数详解补充

  (1)复合函数奇偶性:内偶则偶,内奇同外

  (2)复合函数单调性:同增异减

  (3)重点知识关于三次函数:恐怕没有多少人知道三次函数曲线其实是中心对称图形。

  它有一个对称中心,求法为二阶导后导数为0.根x即为中心横坐标,纵坐标可以用x带入原函数界定。另外,必有唯一一条过该中心的直线与两旁相切。

  8. 常用数列bn=n×(2²n)求和Sn=(n-1)×(2²(n+1))+2记忆方法

  前面减去一个1.后面加一个,再整体加一个2

  9 . 适用于标准方程(焦点在x轴)爆强公式

  k椭=-{(b²)xo}/{(a²)yo}k双={(b²)xo}/{(a²)yo}k抛=p/yo

  注:(xo,yo)均为直线过圆锥曲线所截段的中点。

  10 . 强烈推荐一个两直线垂直或平行的必杀技

  已知直线L1:a1x+b1y+c1=0直线L2:a2x+b2y+c2=0

  若它们垂直:(充要条件)a1a2+b1b2=0;

  若它们平行:(充要条件)a1b2=a2b1且a1c2≠a2c1

  (这个条件为了防止两直线重合)

  注:以上两公式避免了斜率是否存在的麻烦,直接必杀!

  11 . 经典中的经典

  相信邻项相消大家都知道。

  下面看隔项相消:

  对于

  Sn=1/(1×3)+1/(2×4)+1/(3×5)+…+1/[n(n+2)]=1/2[1+1/2-1/(n+1)-1/(n+2)]

  注:隔项相加保留四项,即首两项,尾两项。自己把式子写在草稿纸上,那样看起来会很清爽以及整洁!

  12 . 爆强△面积公式

  S=1/2∣mq-np∣其中向量AB=(m,n),向量BC=(p,q)

  注:这个公式可以解决已知三角形三点坐标求面积的问题

  13 .  你知道吗?空间立体几何中:以下命题均错

  (1)空间中不同三点确定一个平面

  (2)垂直同一直线的两直线平行

  (3)两组对边分别相等的四边形是平行四边形

  (4)如果一条直线与平面内无数条直线垂直,则直线垂直平面

  (5)有两个面互相平行,其余各面都是平行四边形的几何体是棱柱

  (6)有一个面是多边形,其余各面都是三角形的几何体都是棱锥

  注:对初中生不适用。

  14 . 一个小知识点

  所有棱长均相等的棱锥可以是三、四、五棱锥。

  15 . 求f(x)=∣x-1∣+∣x-2∣+∣x-3∣+…+∣x-n∣(n为正整数)的最小值

  答案为:当n为奇数,最小值为(n²-1)/4.在x=(n+1)/2时取到;

  当n为偶数时,最小值为n²/4.在x=n/2或n/2+1时取到。


0试听各科目课程
xhwy668668
加入家长交流圈,添加微信号xhwy668668 加入家长交流圈,添加微信号xhwy668668
热门活动
秦学教育
亲爱的家长(学生)您好:
恭喜您,您已经预约成功!
同时你将获得一次学习测评机会
+年级学科资料