秦学站点
秦学官网
中考数学知识点:二次函数抛物线的性质
小新 2018-11-20 16:55:18

  时间总在过去后才发现它的转瞬即逝,转眼间我们距离考试已经越来越近,同学,老师还有家长这个时候都在和时间赛跑,但是,家长要谨防被浑水摸鱼的假模考信息给骗了,增强孩子的成绩才是较重要的,毕竟选拔都是以成绩为准则的,伊顿教育的小编为同学们整理分享了在考试较后阶段我们学习的一些方法,其实都是较平常的细节,难能可贵的是我们的坚持不懈。其实活是较好的老师,总是不离不弃,默默伴着我们共同与艰难的小升初一起修行。

中考数学知识点:二次函数抛物线的性质

 

  二次函数抛物线的性质

  1.抛物线是轴对称图形。对称轴为直线x = -b/2a。

  对称轴与抛物线的交点为抛物线的顶点P。

  特别地,当b=0时,抛物线的对称轴是y轴(即直线x=0)

  2.抛物线有一个顶点P,坐标为P ( -b/2a ,(4ac-b^2)/4a )

  当-b/2a=0时,P在y轴上;当Δ= b^2-4ac=0时,P在x轴上。

  3.二次项系数a决定抛物线的开口方向和大小。

  当a>0时,抛物线向上开口;当a<0时,抛物线向下开口。

  |a|越大,则抛物线的开口越小。

  4.一次项系数b和二次项系数a共同决定对称轴的位置。

  当a与b同号时(即ab>0),对称轴在y轴左; 因为若对称轴在左边则对称轴小于0,也就是-b/2a<0,所以b/2a要大于0,所以a、b要同号

  当a与b异号时(即ab<0),对称轴在y轴右。因为对称轴在右边则对称轴要大于0,也就是-b/2a>0,所以b/2a要小于0,所以a、b要异号

  可简单记忆为左同右异,即当a与b同号时(即ab>0),对称轴在y轴左;当a与b异号时(即ab<0),对称轴在y轴右。

  事实上,b有其自身的几何意义:抛物线与y轴的交点处的该抛物线切线的函数解析式(一次函数)的斜率k的值。可通过对二次函数求导得到。
#p#副标题#e#

  5.常数项c决定抛物线与y轴交点。

  抛物线与y轴交于(0,c)

  6.抛物线与x轴交点个数

  Δ= b^2;-4ac>0时,抛物线与x轴有2个交点。

  Δ= b^2;-4ac=0时,抛物线与x轴有1个交点。

  Δ= b^2-4ac<0时,抛物线与x轴没有交点。X的取值是虚数(x= -b±√b^2-4ac 的值的相反数,乘上虚数i,整个式子除以2a)

  当a>0时,函数在x= -b/2a处取得较小值f(-b/2a)=4ac-b?/4a;在{x|x<-b/2a}上是减函数,在{x|x>-b/2a}上是增函数;抛物线的开口向上;函数的值域是{y|y≥4ac-b^2/4a}相反不变

  当b=0时,抛物线的对称轴是y轴,这时,函数是偶函数,解析式变形为y=ax^2+c(a≠0)

  7.特殊值的形式

  ①当x=1时 y=a+b+c

  ②当x=-1时 y=a-b+c

  ③当x=2时 y=4a+2b+c

  ④当x=-2时 y=4a-2b+c

  8.定义域:R

  值域:(对应解析式,且只讨论a大于0的情况,a小于0的情况请读者自行推断)①[(4ac-b^2)/4a,正无穷);②[t,正无穷)

  奇偶性:偶函数

  周期性:无

  解析式:

  ①y=ax^2+bx+c[一般式]

  ⑴a≠0

  ⑵a>0,则抛物线开口朝上;a<0,则抛物线开口朝下;

  ⑶极值点:(-b/2a,(4ac-b^2)/4a);

  ⑷Δ=b^2-4ac,

  Δ>0,图象与x轴交于两点:

  ([-b-√Δ]/2a,0)和([-b+√Δ]/2a,0);

  Δ=0,图象与x轴交于一点:

  (-b/2a,0);

  Δ<0,图象与x轴无交点;

  ②y=a(x-h)^2+k[顶点式]

  此时,对应极值点为(h,k),其中h=-b/2a,k=(4ac-b^2)/4a;

  ③y=a(x-x1)(x-x2)[交点式(双根式)](a≠0)

  对称轴X=(X1-X2)/2 当a>0 且X≧(X1+X2)/2时,Y随X的增大而增大,当a>0且X≦(X1+X2)/2时Y随X的增大而减小

  此时,x1、x2即为函数与X轴的两个交点,将X、Y代入即可求出解析式(一般与一元二次方程连用)。

0试听各科目课程
xhwy668668
加入家长交流圈,添加微信号xhwy668668 加入家长交流圈,添加微信号xhwy668668
热门活动
秦学教育
亲爱的家长(学生)您好:
恭喜您,您已经预约成功!
同时你将获得一次学习测评机会
+年级学科资料